Identification of the peroxisomal beta-oxidation enzymes involved in the biosynthesis of docosahexaenoic acid.

نویسندگان

  • S Ferdinandusse
  • S Denis
  • P A Mooijer
  • Z Zhang
  • J K Reddy
  • A A Spector
  • R J Wanders
چکیده

DHA (C22:6n-3) is an important PUFA implicated in a number of (patho)physiological processes. For a long time, the exact mechanism of DHA formation has remained unclear, but now it is known that it involves the production of tetracosahexaenoic acid (C24:6n-3) from dietary linolenic acid (C18:3n-3) via a series of elongation and desaturation reactions, followed by beta-oxidation of C24:6n-3 to C22:6n-3. Although DHA is deficient in patients lacking peroxisomes, the intracellular site of retroconversion of C24:6n-3 has remained controversial. By making use of fibroblasts from patients with defined mitochondrial and peroxisomal fatty acid oxidation defects, we show in this article that peroxisomes, and not mitochondria, are involved in DHA formation by catalyzing the beta-oxidation of C24:6n-3 to C22:6n-3. Additional studies of fibroblasts from patients with X-linked adrenoleukodystrophy, straight-chain acyl-CoA oxidase (SCOX) deficiency, d-bifunctional protein (DBP) deficiency, and rhizomelic chondrodysplasia punctata type 1, and of fibroblasts from l-bifunctional protein and sterol carrier protein X (SCPx) knockout mice, show that the main enzymes involved in beta-oxidation of C24:6n-3 to C22:6n-3 are SCOX, DBP, and both 3-ketoacyl-CoA thiolase and SCPx. These findings are of importance for the treatment of patients with a defect in peroxisomal beta-oxidation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Docosahexaenoic acid synthesis in human skin fibroblasts involves peroxisomal retroconversion of tetracosahexaenoic acid.

The purpose of this study was to determine whether the formation of docosahexaenoic acid in human cells occurs through a pathway that involves 24-carbon n-3 fatty acid intermediates and retroconversion. Normal human skin fibroblasts synthesized radiolabeled docosahexaenoic acid from [1-(14)C]18:3n-3, [3-(14)C]22:5n-3, [3-(14)C]24:5n-3, and [3-(14)C]24:6n-3. The amount of docosahexaenoate formed...

متن کامل

Substrate selectivities differ for hepatic mitochondrial and peroxisomal beta-oxidation in an Antarctic fish, Notothenia gibberifrons.

Hepatic mitochondrial and peroxisomal beta-oxidation were examined in an Antarctic marine teleost, Notothenia gibberifrons. Enzymic profiles and rates of beta-oxidation by intact organelles were determined by using a range of fatty acyl-CoA substrates to evaluate substrate preferences. Partitioning of beta-oxidation between organelles was estimated. Substrate selectivities are broader for perox...

متن کامل

Lipid metabolism in peroxisomes: enzymology, functions and dysfunctions of the fatty acid alpha- and beta-oxidation systems in humans.

Peroxisomes are subcellular organelles present in virtually all eukaryotic cells catalysing a number of indispensable functions in cellular metabolism. The importance of peroxisomes in man is stressed by the existence of an expanding group of genetic diseases in which there is an impairment in one or more peroxisomal functions. One of the major functions of peroxisomes concerns their role in li...

متن کامل

Peroxisomal disorders: the single peroxisomal enzyme deficiencies.

Peroxisomal disorders are a group of inherited diseases in man in which either peroxisome biogenesis or one or more peroxisomal functions are impaired. The peroxisomal disorders identified to date are usually classified in two groups including: (1) the disorders of peroxisome biogenesis, and (2) the single peroxisomal enzyme deficiencies. This review is focused on the second group of disorders,...

متن کامل

Metabolic Interplay between Peroxisomes and Other Subcellular Organelles Including Mitochondria and the Endoplasmic Reticulum

Peroxisomes are unique subcellular organelles which play an indispensable role in several key metabolic pathways which include: (1.) etherphospholipid biosynthesis; (2.) fatty acid beta-oxidation; (3.) bile acid synthesis; (4.) docosahexaenoic acid (DHA) synthesis; (5.) fatty acid alpha-oxidation; (6.) glyoxylate metabolism; (7.) amino acid degradation, and (8.) ROS/RNS metabolism. The importan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of lipid research

دوره 42 12  شماره 

صفحات  -

تاریخ انتشار 2001